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ABSTRACT

This report is concerned with the problem of determining
the hidden lines of computer-drawn, convex pclyhedra. This is the
so-called "hidden-line problem," limited here to convex polyhedra.
The solution presented should be considered as a step toward the

eventual solution of the more general problem of non-convex poly-

hedra. Results based on actual computer tests are included.
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Any convex polyhedral surface

Vertex number i

Face number m

Edge between vertex Vi and vertex Vj
Vantage point

Total number of vertices

Total number of faces

Total number of edges

Picture plane

Original rectangular system of coordinates
System (O,xyz) translated to E

System of coordinates in T

Vector supported by EV
Vector ﬁvj

Unit vector from E, normal to T

Vertex number i in the picture plane
Direction cosines

Distance from E to T

Direction vector when E is at infinity

Vector normal to the face containing Vi,Vd,Vk

Triple product




DETERMINATION OF HIDDEN EDGES IN POLYHEDRAL
FIGURES: CONVEX CASE

I. INTRODUCTION

With the recent interest in applying digital computers to the
solution of graphical problems, a new problem has appeared and received

the name of "hidden-line problem."

In everyday life, the fact that
light can not pass through opaque matter solves the hidden-line problem
immediately: the back lines of opaque objects are hidden. In the case
of a computer representation of the same obJject, however, there is no
opaque matter to stop the light. The question as to which line should
be seen and which should be hidden must be answered mathematically. To
date, no practical solution to this problem in its general form has been
found.

This report proposes a solution to the hidden-line problem in
the restricted case of convex polyhedra. For this case, different solu-
tions exist;s’6 however, it is believed that the approach taken in this
report will lend itself to a generalization to the non-convex case.
Given a mathematical description of the polyhedron and a vantage point,
the algorithm to be described allows a computer (1) to determine which
edges can be seen and which are hidden, and (2) to calculate a projective

view of the object as seen by an observer located at the vantage point.




II. FORMAT FOR PRESENTATION OF POLYAEDRAL DATA

*
A convenient way of describing a polyhedron 1is in terms of its

vertices and faces:

1) Vertices
A subscript 'i' is attached to each vertex, e.g., Vi (See
Fig. 1). Although 'i' may be chosen arbitrarily, for con-
venience of notations it is assumed that i = 1,2,...,M, where
M is the total number of vertices. Each vertex Vi is given
by three coordinates: Vi(xi’yi’zi) with respect to a three-
dimensional system of axes (See Section IV).

2) Faces
Each face of a polyhedron is a polygon7. A fixed direction
of travel is chosen on this polygon. Starting from any ver-
tex, and traveling around back to the original vertex, a
listing of the vertices successively encountered uniquely
describes the polygon. For instance, Fm = p,k,1i,j,t,p de-
notes the face whose successive vertices are Vb,V ,Vi,Vj,Vi.
The index 'm' varies from 1 to N, where N is the total number
of faces (See Fig. 1).

* "A polyhedron is a finite set of polygons arranged in space in
such a way that every side of each polygon belongs to just one
other polygon, with the restriction that no subset has the same
property".S




Since a convex polyhedron is a two-sided surface, it is pos-
sible to define an "inside" and "outside".2 Using this property, the
direction of travel around the faces is chosen such that each face is
described in a clockwise direction for an observer outside the poly-
hedron. With the knowledge of both vertex and face data, it is now
possible to determine the edges. From the definition of a polyhedron,
an edge is defined as the intersection of two faces. The necessary

and sufficient condition for the edge ViV to exist is, therefore, that

J
i and j be adjacent subseripts in the string defining a face. Once i
and j are found, say in Fm = p,k,1i,j,t,p, there must be one and only
one other face such that Fn = 8,4,r,3,i,a.

In the computer representation every edge Vivj of the poly-

hedron 1s characterized by a block of four adjacent cells in an array,

containing respectively:

1)  Vertex number: i
2)  Vertex number: 3
3)  Face number: m
4)  PFace number: n

Eveatually, a fifth cell is added to each block. This cell contains
the code for visibility or invisibility of the edge. The total num-
ber of edges is denoted by L. Since the polyhedron is convex, there

exists a fixed relationship between the number of vertices, edges




and faces. This relation is known as Euler's equality and is written

as: (See Fig. 1)
M-L+N=2

Upon determination of L, a test is performed to check whether L satis-

fies Buler's equality. If it does not, an error is indicated.




ITI. PROPERTIES OF CONVEX POLYHEDRA

The visibility test to be described in Sectilon VI is based on
the following property:

To an external observer, the faces of a convex

polyhedron are either completely visible or

completely invisible.

To demonstrate this property, it is first assumed that a partially visible
face, F, exists and it is then shown that this yields a contradiction.
First, two points, P and Q, are chosen on the face F such that: 1) P

is visible, Q is invisible; and 2) Q is not located on an edge and P

is not on the boundary between the visible and invisible regions (See
Fig. 2). Since the polyhedron is convex, the lire EQ intersects the
surface S of the polyhedron in two points and two points only: Q and @'.
It is understood that these two points are each on a Tace of the polyhe-
dron. Since Q is invisible, Q' must lie between E and 3. Consider now
Q; between q and w'. @ is inside S by definition of the convexity.
Hence, it follows that all points of PqQ,; are inside S. Since P is not
on a visible-invisible boundary (condition 2), there is a point Py on PQ
such that P, is visible. Also since S is a closed surface and P, is
visible, all points of EP, are outside S. This would include the inter-
section R of EP, with PQ;. But it has already been established that if
R is on PQy, it is inside S. Since this is a contradiction, it is con-

cluded that no face of a convex polyhedron can be partially visible.




It should be noted that this proof is valid for the isometric
case as well (vantage point at ianfinite distance).

An immediate consequence of the above property is that no
edge of a convex polyhedron can be partially visible: it is either

visible or invisible.




IV. ©SYSTEM3 OF COORDINATES

Three rectangular systems of coordinates are used: (0,xyz),

(E,XYZ), and (0,x'y') (See Fig. 3).

A. E at a Finite Distance

1) System (0,xyz)
This is a fixed system of axes with origin at 0. The
coordinates of the vertices Vi(xi,yi,zi) end those of
the vantage point E(xo,yo,zo) are given in this systen.
2) System (E,XYZ)
This variable system of coordinates is simply the system
(0,xyz) translated to the vaintage point. The transforma-

tion is expressed by:

X=x-x
o
Y=y-yv,
Z =2z - 2
o)

The test for face visibility is performed in this basis.
3) System (0,x'y")

This two-dimensional basis represents the picture plare,

i.e. the plane of the actual drawing. This picture plane
is chosen perpendicular to the direction OE, through the

origin 0. To preserve the sensation of vertical.ahnd




horizontal for an observer located at the vantage point,
the axis Ox' is chosen to lie in the xy-plane. The only
exceptioﬁ is when E is located on the z-axis, in which
case the picture plane simply becomes the original xy-

plane.

At this point, a perspective drawing is defined as the set of

points W, formed by vectors v from E to points of S plercing the picture

a8

plane.”™ If u is a unit vector from E, normal to the picture plane, a

vector w is written as (See Fig. L).

D
V.V

W=V

Once all wi(xi’Yi’Zi) are computed, it is desired to find their two-
dimensional coordinates Wi(xi,yi) in the picture plane T. In its general

form, the transfcrmation can be written as:

" x! h\ +x ]
x5 U | RS TR
' = \Y +
¥s Az Ho 2 Yi Y,
7! A V Z. + 2
B 5 3 M3 3 107 o ]

where xi,ui,vi are the direction cosines of the new basis. In addition,

the following relations are applicable:

* Notation: Lower case letter denote vectors, e.g.: W =w




Since i1 was chosen

2 2
Tz ot op3 o=
+ Vv o+ vE =

z! =
i

be perpendicular

%5 Yo
o =g S

= 2 + 2

R E R AR

Since 0x' lies in the xy plane,
v, =0

After solving for A;,i4,As,H,, Yy, the matrix of the transformation is:

x!
i

1,2,3.

FJ

to OE, it follows that:

z
=2
D

Y X 11
[ o -2 0 X, +
d d i
Y, +
i
2
X 2 YoZ, X2 + y2 .
_ dp abp db | i
Xo = Q, yo = 0, for which
x! = x,
i i
yi =y

X
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B. E at a Infinity

1) System (O,xyz)

This is the same system as above (A.1). The direction

cf the vantage point is given by a vector vo(xo,yo,zo).

2) System (0,x'y")

In contrast to the case of the vantage point at a
finite distance, in this case the Wi can not be com-
puted using w =-32; because of the infinite values of

D,w,v. In general, the condition:

will not be satisfied.

Since the interest is in an isometric drawing of the object as seen

from a direction-perpendicular to the picture plane, the values of zi

are irrelevant to the problem. Consequently, the same matrix will be

used for the coordinate transformation.

X!
i

C (]
T q 3 0 Xy
= yi
_ XOyO _ yOZO X‘é * y?) 2
ap aD ap i
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V. DETERMINATION OF HIDDEN FACES

A. Vantage Point at Infinity

The position of the vantage point E at infinity is given by
the direction vector vb. Since a typical face Fn =1i,J,k,t,p,1 is

uniquely defined by three vertices only, the notation Fﬁ%k will be used

for this face. To test the visibility of F;jk’ a normal vector to this
face is needed (See Fig. 5). The vector is chosen positively oriented

toward the inside of the polyhedron and denoted: nijk' Then a vector

u, is defired such that: 1) uj is a finite length vector supported by
J

EYV and 2) uj is positively oriented from E to Vj' Since E is at in-

finity, all vectors uj are one and the same:

To check whether Fi' is facing or looking away f{rom the vantage point,

ik
the following dot product is computed (See Figure 5):

A sk 5" P4 5k o ik

According to the sign of Aijk it is concluded that:

Aijk >0 F&jk Visible
< . s
Aijk <0 F&jk Invisible

The information contained in the input data can now be fully exploited

to determine n.., and A... . First the inward normal vector n., is
ijk ijk ijk
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written as the cross product

e = (vk—vj)x(vi—vj) = vijvij
Then Aijk can be expressed as the triple product
Bije = Byget By = 7 (i)
wvhich can be written in the form
xk—xj xl—xJ =X
Aijk = yk_yj yl_yj —yo
zk-zj zi-zJ —z0

It can be seen that the test for face visibility reduces simply to the

evaluation of a three-by-three determinant.

B. Vantage Point at a Finite Distance

A greater symmetry is achieved in Aﬁjk when E is at a finite dis-

tance and E is chosen as the origin of new coordinates. Under this condi-

tion, vj = é%j satisfies the requirements on uj and one may take uj = vj

(See Fig. 6). The expression for 2 5k becomes:
S T Mgy T Pig Yy
Ny = (pvigvy)
i T (Ve vy - ey vpvy)
Lk S (vk,vi,vj) - (vj,vi,vj) - (vkj’vj’vj)
i = (V)




since V4 X V,.-V, =
J i i

and this can be written as:

D 5k

X,
10

13

By rearranging:

C. Determination of Hidden Edges

By = (Vpveevy)
o
Yo with
zko

io

io

io

Once each of the N faces has been classified either as visible

or invisible, attention can be focussed on the edges. An edge Vivj ap-

pears in two faces, Fijk and F%ji'

Since the polyhedron is convex, it

is sufficient for ViVj to be visible that either of these faces be

visible. Conversely, a necessary and sufficient condition for V'J__Vj to

be invisible is that both these faces be invisible.

summarized in the following table:

Fijk
F&jk
Fi,jk

L
ijk

Visible

Invisible

Visible

Invisible

F‘tji

F‘t,ji

F"cji

Fes1

Visible

Visible

Invisible

Invisible

A formal notation for edge visibility is:*

* W' denotes the logical 'OR’

These results are

Visible

Visible

Visible

Invisible
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i si = ( v
ViVj Visible (Aijk > 0) (Atji > 0)

Once the visibility or invisibility of each edge has been deter-
mined, it is a simple matter for a computer program to plot the perspec-
tive projection of the object, using solid lines for visible edges and
dashed lines for invisible edges.

A FORTRAN program for the foregoing algorithm was written and
tested. Some of the results obtained are shown in Figs. 7,8,9, and
10. The illustrations are reproductions of the actual computer output

as plotted on a CALCOMP plotter.
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Vi. CONCLUSION

The main objective in developing the foregoing algorithm was
to lay a foundation for an algorithm that would hold also for the case
of non-convex polyhedra. At this stage of the work, it is too early to
tell whether this objective has been achieved. However, the simplicity
of the algorithm for handling convex polyhedra is considered encouraging
for meeting the ultimate objective. Even in its limited present form,
the algorithm should be of interest to persons active in the computer

graphics field.
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